百度Apollo车路协同自动驾驶典型实践场景和技术优势
基于北京亦庄各个路口的实际交通流数据,分别采用自适应控制方法,以及基于GNN的数据预测 与补全方法(原理见图6.48),对区域信号灯进行优化控制性能比较,如表6.4所示,全天延误表示0点至24点内的平均延误;早高峰延误表示早7时至9时内的平均延误;平峰延误表示10时至16时 内的平均延误。结果表明,基于GNN的数据预测与补全方法,在不同时段内均可有效提升交通通 行效率,降低车均延误。
表 6.4 基于GNN预测的区域信号控制与自适应区域信号控制对比(亦庄)


图 6.48 基于GNN流量预测的区域信号控制示意图
- 下一篇:标准 | SAE J3101车辆的硬件保护安全(1)
- 上一篇:地图参考位置协议
编辑推荐
最新资讯
-
推荐性国家标准《乘/商用车电子机械制动卡
2025-04-30 11:13
-
载荷分解
2025-04-30 10:46
-
布雷博在上海开设亚洲首个灵感实验室
2025-04-30 10:25
-
组分性能对锂离子电池卷芯挤压力学响应的影
2025-04-30 09:00
-
美国发布自动驾驶新框架,放宽报告要求+扩
2025-04-30 08:59