自动驾驶基础之——如何写卡尔曼滤波器?
将以上五个公式写成代码如下:
至此,一个卡尔曼滤波器的雏形就出来了。
包含的变量有
代码:使用卡尔曼滤波器
以激光雷达数据为例,使用以上滤波器,代码如下:
其中GetLidarData函数除了获取点的位置信息m_x和m_y外,还获取了当前时刻的时间戳,用于计算前后两帧的时间差delta_t。
以上就是卡尔曼滤波器对于匀速运动物体跟踪的例子。在这个基础上,业内还有扩展卡尔曼滤波器和无迹卡尔曼滤波器,它们与经典卡尔曼滤波器的最大区别是状态转移矩阵F和测量矩阵H的不同,剩下的跟踪过程依然需要使用前面介绍的7个公式。
只要你能够写出某个模型的F、P、Q、H、R矩阵,任何状态跟踪的问题都将迎刃而解。
结语
以上就是卡尔曼滤波器从感性分析到理性分析的过程。你会发现真正进行工程开发时,除了具备基本的写代码能力外,利用大学所学的线性代数知识推导公式的能力也是必不可少的。
- 下一篇:自动驾驶平台盘点
- 上一篇:解析丰田对自动驾驶汽车的愿景:不完全是无人驾驶的模式
最新资讯
-
推荐性国家标准《乘/商用车电子机械制动卡
2025-04-30 11:13
-
载荷分解
2025-04-30 10:46
-
布雷博在上海开设亚洲首个灵感实验室
2025-04-30 10:25
-
组分性能对锂离子电池卷芯挤压力学响应的影
2025-04-30 09:00
-
美国发布自动驾驶新框架,放宽报告要求+扩
2025-04-30 08:59