一文读懂自动驾驶数据闭环



-
1)用于配置评估(对于评估者);
-
2)用于配置生成(用于优化器);
-
3) 用于动态配置的自适应。
-
“Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks”
-
“Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results“
-
“Self-training with Noisy Student improves ImageNet classification“
-
“Unbiased Teacher for Semi-Supervised Object Detection“

-
“Pseudoseg: Designing Pseudo Labels For Semantic Segmentation“

-
“Semantic Segmentation of 3D LiDAR Data in Dynamic Scene Using Semi-supervised Learning“

-
“ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection“

-
“3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection“

-
“SimCLR-A Simple framework for contrastive learning of visual representations“
-
“Momentum Contrast for Unsupervised Visual Representation Learning“
-
“Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning“
-
“Deep Clustering for Unsupervised Learning of Visual Features“
-
“Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“

最新资讯
-
E-NCAP2026对自适应巡航ACC的要求V1.0(上
2025-09-14 14:23
-
中国汽研亮相国际损伤生物力学大会(IRCOBI
2025-09-13 15:56
-
E-NCAP2026对测试设备的要求(下)
2025-09-13 15:53
-
E-NCAP2026对测试设备的要求(上)
2025-09-13 15:48
-
一汽车项目落户常州!
2025-09-13 15:44