一文读懂自动驾驶数据闭环



-
1)用于配置评估(对于评估者);
-
2)用于配置生成(用于优化器);
-
3) 用于动态配置的自适应。
-
“Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks”
-
“Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results“
-
“Self-training with Noisy Student improves ImageNet classification“
-
“Unbiased Teacher for Semi-Supervised Object Detection“

-
“Pseudoseg: Designing Pseudo Labels For Semantic Segmentation“

-
“Semantic Segmentation of 3D LiDAR Data in Dynamic Scene Using Semi-supervised Learning“

-
“ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection“

-
“3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection“

-
“SimCLR-A Simple framework for contrastive learning of visual representations“
-
“Momentum Contrast for Unsupervised Visual Representation Learning“
-
“Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning“
-
“Deep Clustering for Unsupervised Learning of Visual Features“
-
“Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“
广告 最新资讯
-
联合国法规R133对汽车可回收性的工程化约束
2026-02-05 13:01
-
联合国法规R107对M2/M3类客车一般结构的工
2026-02-05 12:28
-
联合国法规R104对车辆回复反射标志的工程化
2026-02-05 12:27
-
联合国法规R99对HID光源本体的工程化约束
2026-02-05 12:25
-
联合国法规R98对HID前照灯的工程化约束
2026-02-05 12:25





广告


























































