一文读懂自动驾驶数据闭环



-
1)用于配置评估(对于评估者);
-
2)用于配置生成(用于优化器);
-
3) 用于动态配置的自适应。
-
“Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks”
-
“Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results“
-
“Self-training with Noisy Student improves ImageNet classification“
-
“Unbiased Teacher for Semi-Supervised Object Detection“

-
“Pseudoseg: Designing Pseudo Labels For Semantic Segmentation“

-
“Semantic Segmentation of 3D LiDAR Data in Dynamic Scene Using Semi-supervised Learning“

-
“ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection“

-
“3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection“

-
“SimCLR-A Simple framework for contrastive learning of visual representations“
-
“Momentum Contrast for Unsupervised Visual Representation Learning“
-
“Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning“
-
“Deep Clustering for Unsupervised Learning of Visual Features“
-
“Unsupervised Learning of Visual Features by Contrasting Cluster Assignments“

最新资讯
-
印度马恒达访问泽尔测试,深入交流汽车测试
2025-06-16 17:41
-
获首批CCTA充电兼容认证!北京现代ELEXIO开
2025-06-16 17:39
-
2025智驾“封神榜”测评——高速场景|小米S
2025-06-16 15:18
-
直播 | 汽车EMC新探索(整车动态EMC和混响室
2025-06-16 14:42
-
直播 | 车载毫米波雷达和雷达罩测试方案
2025-06-16 14:42