基于CFD分析和试验的整车热管理性能研究

2021-02-17 21:01:03·  来源:电动学堂  作者:崔振伟  
 
文章来源:中国第一汽车股份有限公司天津技术开发分公司随着各类一维和三维商用仿真软件的推陈出新,整车热管理开发越来越倚重于运用各类软件来验证方案,以期达
文章来源:中国第一汽车股份有限公司天津技术开发分公司

随着各类一维和三维商用仿真软件的推陈出新,整车热管理开发越来越倚重于运用各类软件来验证方案,以期达到更佳效果的同时减少开发周期和成本,学者们在此方面做了大量的研究和实践。文章采用CFD仿真结合整车环境模拟仓试验的方法,验证了一系列优化方案对整车热管理性能的贡献,选择了最优的方案组合进行应用,帮助车型通过热平衡考核,对其他车型的开发也有很好的借鉴意义。

1现状分析

在某新车型项目开发中,出现了整车热平衡考核无法通过,冷却性能严重不足的情况。主要表现为:爬坡工况和高速工况水温快速超过118℃的报警限值,仪表报警,整车空调停止工作进入热保护状态;在连续爬坡工况中,还出现了发动机工作粗暴,功率和扭矩逐渐下降的现象。
通过采集发动机水温、进气温度、发动机控制单元控制数据等参数并分析后,将问题归结为3方面:1)散热系统性能不足,导致水温超标;2)停机后无法有效降低缸体和增压器温度;3)中冷器性能不足,导致连续爬坡工况下发动机进气温度超标,爆振增加,功率和扭矩丢失。

2方案制定

2.1优化格栅
增大车辆上、下格栅开口面积可以有效增加机舱进风量,但过大的开口会影响整车视觉美观性,对异物的阻挡效果也会降低,导致散热器过早的损坏;机舱进风量的增加意味着整车风阻的增大,这也会对整车油耗产生不利影响。因此,选择合适的格栅开口面积非常重要。
根据格栅造型、格栅与冷却模块的位置关系,制定了格栅开口增大方案,如图1所示。对方案进行了仿真分析,分析结果,如表1所示。
基于CFD分析和试验的整车热管理性能研究
基于CFD分析和试验的整车热管理性能研究11
从表1可以看出,新方案相比于原方案,散热器进风量在低速工况下可增加2.99%,高速工况下可增加6.31%,但中冷器进风量在低速工况下无变化,高速工况下有所下降;对比上、下格栅的进风量变化(分别增加21.75%和31.84%),发现风量利用率有所下降。进一步分析流场发现,由于机舱在中冷器下方和散热器两侧均存在间隙,导致进入格栅的风量利用率不高,如图2所示。综上,决定采用新方案格栅,同时修改导风板方案以优化前端模块密封。

基于CFD分析和试验的整车热管理性能研究2
2.2优化导风板
根据流场仿真结果,决定在导风板周边与保险杠的接触位置增加海绵条以优化密封效果,如图3所示。
基于CFD分析和试验的整车热管理性能研究3
鉴于中冷器下方风量泄漏较严重,制定了增加下部密封的一体式导风板方案,如图4所示。CFD仿真风量,如表2所示。

基于CFD分析和试验的整车热管理性能研究4
基于CFD分析和试验的整车热管理性能研究44
低速工况下,新方案相比原方案冷却模块进气量变化不大,其中,冷凝器、散热器风量均有微小增加,中冷器风量不变。但新方案上、下格栅进气量均小于原方案,说明格栅进风的利用率更高。高速工况下,新方案的冷凝器、散热器风量相比原方案均有所增加,但中冷器风量减少。新方案上、下格栅的进气量均小于原方案,格栅进风的利用率显著提高,有利于整车风阻系数的减小。
导风板增加下部密封流场仿真结果,如图5 所示。从机舱流场来看,新添加的下导风板不能完全解决格栅进风泄露问题,同时会使得下格栅进风量有所减小,这在高速工况下尤为明显:在120 km/h 的工况下,虽然进风泄露有所减少,但下格栅的进风量减少的更为明显,导致中冷器风量反而有所减小。

基于CFD分析和试验的整车热管理性能研究5
综上,增加下导风板产生的收益并不能抵消其产生的不良影响,因此决定仅采用增加海绵条密封方案,不采用增加下部封堵方案。
2.3提高风扇转速
提高整车冷却能力的最直接手段就是增加冷却模块的散热量,而增大散热器的迎风面积是最有效的手段。但受限于整车造型,前端框架存在最大边界,散热器和中冷器难以增大迎风面积,因此想要增强冷却模块的散热能力,提高风扇风量也是比较好的选择。综合考虑风扇性能和噪音,将风扇转速由当前的2500r/min提升至2600r/min左右,并进行实车试验。在试验中通过外接电源的方式来驱动风扇,通过提升电流来提高风扇转速,试验结果,如图6所示。

基于CFD分析和试验的整车热管理性能研究6
从试验结果可以看出,提高风扇转速对冷却性能的提升效果明显,同时主观感受上风扇噪音并未有明显增加,因此决定采用此方案。
2.4优化风扇控制策略
发动机水温和进气温度会直接影响发动机工作状态,爆振增加的趋势会促使发动机控制单元推迟点火提前角、增大喷油量等,因此,风扇的提前介入会改善发动机运转状态,有益于热管理。原风扇控制策略中风扇高速档开启较晚,无法有效抑制水温上升速率,并且发动机停机后风扇延时运转时间较短,无法满足增压发动机缸体和增压器高余热的散热要求。因此,分别制定了提前3℃和提前5℃开启风扇高速挡的方案,并将风扇停机运转试验从30s延长至60s。采用以上方案进行实车试验验证,试验结果如图7所示。

基于CFD分析和试验的整车热管理性能研究7
从试验结果可以看出,控制策略中对风扇高速挡的开启水温设定越低,对水温上升速率的抑制效果越好,对整车热管理性能的贡献越大。因此最终决定采用100℃开启风扇高速挡的方案。

3整车试验验证

基于以上方案验证结果,决定选用增大格栅进风面积、导风板增加海绵条改善密封、提高电动风扇转速并延长停机运转时间和优化电动风扇控制策略4个方案进行综合应用。应用后的整车热平衡试验结果,如表3所示。所有热平衡工况均满足要求,试验通过。
基于CFD分析和试验的整车热管理性能研究73

4结论

提高整车热管理的方式有很多,但应用在不同车型上的效果会产生很大差异,有些方案甚至会对整体产生不利影响,如文章所提到的增加下部密封方案。因此,方案的确定必须基于整车具体情况,进行详细分析后确定,CFD流场仿真可以提供很好的借鉴,并且缩短试验周期,节约费用。 
分享到:
 
反对 0 举报 0 收藏 0 评论 0
沪ICP备11026620号